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EXTREME DROUGHT IN GRASSLANDS EXPERIMENT



http://welcome.colostate.edu/index.asp

Climate predictions for late 215t Century
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Climate predictions for late 215t Century
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Ecosystems exhibit differential sensitivity to interannual
rainfall variability
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Regional drought in 2012 reduced precipitation by 40%
below the long-term average at all EDGE sites

HooH

=l
=

Growdng Season
Temperature [C]

=

4
=
[y}
=0
[
i
O
[
-—
=
|

Precipitation in previous 12 months
(deviation from long-term mean, %)

(% reduction in growing season precipitation)

SEM/SBL  SGS HPG  HAYS — KMZ SBL SGS HPG HAYS KNZ
Site

Knapp et al. 2015 Oecologia



Sites exhibited differential sensitivity to this regional
drought
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Arid sites were far more sensitive than mesic sites
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An increasing number of calls for coordinated climate
change
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EDGE: Extreme Drought in Grasslands Experiment

How important are the attributes of ecosystems per se versus the
environmental context in which climate is changing in determining
ecosystem sensitivity to climate change at regional scales?
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EDGE: Research platform

Desert grassiand
Shortgrass prairie
Mixed-grass prairie




NM-EDGE: Extreme Drought in Grasslands Experiment
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NM-EDGE: Extreme Drought in Grasslands Experiment

Treatments:
| « Ambient rainfall
« A 66% reduction in seasonal precipitation

* Six week shift in the summer monsoon
Response variables:

* Above and belowground NPP
Soil respiration
Plant community composition
Soil N availability
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EDGE: Net Primary Production

Pretreatment

* No significant pretreatment
differences in NPP
* Year 1 no recovery at either site
with«late.season rains =
~» Year 2 NPP recovered with late
season rains
-t * Year 2 very low NPP at black
grama site under drought
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Seasonal mean soil respiration was reduced by 60% in response to drought

black grama
mean daily flux
1.0
L

blue grama
mean daily flux




TECO Model: spin up
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Shi et al. 2014 Biogeosciences



A model for international collaboration: The Nutrient Network

~ nutrient
network

1. Add N, P, K at
identical rates
across all sites

2. Exclude herbivores |
with identical fences .: ’

Sm

Plot




Sites currently participating in the Nutrient Network




droughthET

T T T -

* NSF-funded Research Coordination Network

Pls: Melinda Smith (CSU), Osvaldo Sala (ASU), Rich
Phillips (Indiana U)

Overarching goal: advance our general
understanding of how terrestrial ecosystems may
vary in their response to drought,..

And more specifically to assess the mechanistic
basis for differential sensitivities of terrestrial
ecosystems to drought



How de we manipulate drought comparably across
ecosystems

Passive approach —
reduce a fixed amount of
each rainfall event




Reductions in precipitation differ among
ecosystems for drought years
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>180 scientists have joined...

* Please join us!
www.drought-net.org



Carbon isotope signatures from horse tooth enamel from
Pakistan and the USA showing the transition from C3
woodland to C4 grassland in the late Miocene

Cerling et al. 1993 Nature



Global map of woody plant encroachment into grassland
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Bush encroachment: alternative stable states

CAUSES CONSEQUENCES
Grazing Warmer nights
Drought Higher erosion rates

Warming Greater nutrient losses

Elevated CO, o Lower diversity

Precipitation seasonality Higher CO, sequestration




Grazing as a driver of alternative stable states in mesic grassland

A) Differing Press Lengths B) Different Press Magnitudes C) Differing Growth Rates
(Darker = Longer Press) (Darker = Stronger Press) (Darker = Faster Growth)
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Ratajczak et al. in prep.



Fire frequency as a driver of alternative stable states in mesic

Fire Reduced for Fire Reduced for

Ratajczak et al. in review
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Grazing as a driver of alternative stable states in desert grassland
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Fire frequency as a driver of alternative stable states in mesic
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